

Retention behavior of endotoxin, DNA, and protein A on CHT[™] ceramic hydroxyapatite and CFT[™] ceramic fluorapatite

Pete Gagnon, Julia Zhen, Paul Ng, Cheryl Aberin, Jie He, Heather Mekosh, Larry Cummings

IBC, Boston, September 21, 2005

Chemical structure

- CHT
- $Ca_{10}(PO_4)_6(OH)_2$ $Ca_{10}(PO_4)_6F_2$
- CFT

Primary retention mechanisms

- Amino residues
- Classical cation
 exchange

Primary retention mechanisms

- Carboxyl clusters
- Classical chelation

Primary retention mechanisms

- Phosphoryl residues
- Metal coordination

Retention of DNA

- DNA is highly phosphorylated, which should cause it to form strong coordination complexes with CHT calcium.
- Elution in the absence of phosphate should not occur.
- Charge repulsion between DNA phosphates and CHT phosphates may modulate retention behavior. If so, NaCI should have a clear influence.
- Size and rigidity may also affect selectivity.

Retention of DNA on CHT

CHT type I, 40 micron, 600 cm/hr

Retention of DNA on CFT

Retention of endotoxins

- Endotoxins are highly acidic due to a high content of phosphoryl and carboxyl residues.
- Both should have strong affinity for CHT calcium. Elution in the absence of phosphate should not occur.
- Charge repulsion between protein A carboxyls and CHT phosphates may be a factor.
- Some endotoxins have amino groups which may cation exchange with CHT phosphates at low ionic strength.
- Endotoxins occur in a range of aggregations states, into the millions of Daltons. Most of the charges are internalized because of their association with the hydrophobic lipid A region. Both size and charge shielding may affect retention.
- Endotoxins are frequently complexed with proteins and other cell wall components that may also influence retention

Retention of endotoxin, CHT vs CFT

phosphate gradient elution at different concentrations of NaCl

Retention of endotoxin, CHT vs CFT

phosphate gradient elution at different concentrations of NaCl

Retention of endotoxin, CHT vs CFT

phosphate gradient elution at different concentrations of NaCl

Expected retention of protein A

- Protein A is highly acidic (pl 4.7–5.1), corresponding to its carboxyl-rich composition.
- This should cause strong binding by chelation with CHT calcium. Elution in the absence of phosphate should not occur.
- Charge repulsion between protein A carboxyls and CHT phosphates may be a factor.
- Since protein A binds very weakly to cation exchangers, binding of amino residues to CHT phosphates is not expected to be a major factor.

Retention of protein A, CHT vs CFT

Phosphate gradient elution at different concentrations of NaCl

Retention of free protein A vs IgG

Phosphate gradient elution at different concentrations of NaCl

CHT, type I, 40µm Green protein A, Gray IgG

Retention of free protein A vs lgG

NaCl gradient elution at different phosphate concentrations

CHT, type I, 20µm Green protein A, Gray IgG

Retention of leached protein A vs lgG

Protein A-purified human IgG1 CHT type I, 20 micron, 300 cm/hr

IBC, Boston, September 21, 2005

Retention protein A vs IgG

- The elution position of free protein A overlaps to varying degrees with the elution position of free IgG, regardless of whether elution is conducted with phosphate or with NaCI.
- This implies that protein A clearance should be nil, but
- Leached protein A is well separated from IgG when IgG is eluted in NaCI. Most of the protein A is restricted to the 0.5M NaPO4 strip.
- This indicates that the retention properties of both components are additive in the complex, particularly as they relate to their carboxyl interactions with CHT calcium.

Retention of protein A vs IgG

Clearance summary

Protein A-purified human IgG1 CHT type I, 20 micron, 300 cm/hr

Clearance summary, monomer pool

- DNA
 - $> 10^3$ by PCR, to < 1ng/mL by Picogreen
- Endotoxin
 - 7 x10⁴, to 1EU/mL by LAL
- Leached protein A
 - 90%, from 55 to 5ng/mL by Cygnus
- IgG aggregates
 - >99%, from >40% to <1% by HPSEC</p>

Acknowledgments

- Special thanks to Avid BioServices of Tustin, CA for generously providing antibodies to support this work.
- For a copy of this presentation, please contact <tanis_correa@bio-rad.com>
- For technical questions, you are welcome to contact <peter_gagnon@bio-rad.com>

